
International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 280
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

SQL Injection: Detection and Prevention Techniques
Pooja

Research Scholar, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra
Email: poojachoppra@gmail.com

Monika
Assistant Professor, Department of Computer Science & Applications, Kurukshetra University, Kurukshetra

Email: monikaporiye@gmail.com
Abstract
As the use of internet is increasing rapidly, the attacks on web applications are also increasing as well.
Nowadays SQL injection attack is a major issue of web applications. It allows unrestricted access to the
database. The successful execution of SQL injection leads to a loss of integrity and confidentiality. In this
paper, a review of different types of SQL injection attacks, their detection and prevention techniques are
presented. This paper will help the researchers decide the technique of interest for further studies.

Keywords: Detection, Prevention, SQL injection attacks, Tautology Attack

1. Introduction

SQL injection attack is a type of security vulnerability
that target database connected web applications. In
this attack, the attacker inserts a malicious SQL query
into the web application to manipulate data or even to
gain access to the back-end databases. SQL injection
is on the top in the list of web application
vulnerability [1]. This vulnerability is mainly
occurring due to weaknesses present in source codes.
The other reasons of this vulnerability may be the
weakness of the programming language or improper
input validation. A successful SQL injection attack
can update, alter or delete data stored in the back-end
databases, read sensitive information from the
database and perform administrative operation on the
database such as shutdown the DBMS. For example-

Original Query: SELECT *FROM Login WHERE
User_id=’ram’ and password=’123’

Injected Query: SELECT *FROM Login WHERE
User_id=’’ OR 1=1; /*’ and password=’*/-’

In this query 1=1 is evaluated always true. And rest
part of the query is evaluated as a comment. The
query is executed and the attacker can access the
database. Thus, SQL injection attack harms the
database security and because the SQL databases store
sensitive information, so loss of confidentiality is a
common problem with SQL injection vulnerabilities.
When the weak SQL query is used to view user name
and password, then the other user may access the data
with no previous knowledge of the password. This

vulnerability affects the authentication. The successful
exploitation of SQL injection vulnerability may
change the authorization information. To change or
delete the sensitive information harms the integrity.
To resolve these problems, an efficient solution is
necessary.
This paper is organized in the following sections.
Section 2 describes the SQL injection attack, section 3
describes the literature review of SQL injection
detection and prevention techniques and section 4
concludes the paper.

2. SQL Injection Attack

There are various types of SQL injection attacks. The
following discussed attacks violate the security of web
applications.

2.1 Tautology Attack

This attack focuses to inject a SQL query into
conditional statements to return all true values. It is
done by simply making the “WHERE” clause always
true for every query. Generally the tautology attack is
used to be in bypassing authentication pages and in
extracting data from the databases. For example:

Original Query: SELECT *FROM User_info WHERE
Username=’Mohan’ and password=’133045’

Injected Query: SELECT *FROM User_info WHERE
Username=’’OR 1=1 and password=’1456’

IJSER

http://www.ijser.org/
mailto:poojachoppra@gmail.com

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 281
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Using this injected query the attacker can return all
true values for username and password of all stored
users in the database.

2.2 Logically Incorrect Query

The objective of the attacker is to gather all possible
information about the structure and the types of the
back-end databases in a web application. For this
purpose, an attacker inputs a manipulated query to
generate an error message from the database. Error
message provides the information about table name,
field name and sometimes the condition of failure. For
example:

SELECT *FROM User_unit1 WHERE
Username=’xyz’ HAVING 1=’1’; -- and
password=’15672’

Error generated: “Column ‘User_unit1, User_id’ is
invalid in the select list because it is not contained in
either an aggregate function or in the GROUP BY
CLAUSE”. The error shows the table name,
User_unit1 and one of the column names, namely
User_id.

SELECT *FROM User_unit2 WHERE Username=’n’
HAVING 1=’1’; -- and password=’15672’

Error generated: “Column ‘User_unit2, User_id’ is
invalid in the select list because it is not contained in
either an aggregate function or in the GROUP BY
CLAUSE”. This error message displays the table with
column name ‘Userinfo.Username’ [2].

Thus, the attacker can extract all the field names of the
table. The two types of error message returns, logical
and syntactical. The name of the fields is displayed by
the logical errors which extracts the fields or table
names while syntactical errors informs which
parameters are vulnerable for an injection attack.

2.3 UNION Queries

Code injection and manipulation of information are
the main objectives of these attacks. For this purpose a
UNION operator is used for data extraction from
different tables. Attacker joins the injected query by
the UNION operator, so that they can get data about
other tables from the application.

SELECT Name, Phone FROM Users WHERE id=$id

Id value can be injected by following query:

$id=UNION ALL SELECT CreditCardNumber,
1FROM CreditCardTable

SELECT Name, Phone FROM User WHERE
id=1UNION ALL SELECT CreditCardNumber, 1
FROM CreditCardTable

This query will join the result of the original query
with all the credit card users.

2.4 Piggy-Backed Queries

This attack injects the additional queries to the
original query. The attacker uses the query delimiter,
such as ‘;’ to add the extra query along with the
original query. For example:

SELECT accounts FROM Customers WHERE
User_id= ‘ram’ and password= ‘123’; drop table
Customers

If the database gives permission to run multiple
queries in the same line, then the database accepts the
both queries and executes them because of “;”
character. The query before the ‘;’ is the original
query and after the ‘;’ is the SQL injection attack.
When the database will execute the second query, then
customers tables will be dropped and thus loss of
valuable data. They perform manipulation operations
by using INSERT, UPDATE and DELETE clause.

2.5 Inference

In this attack, the two types of attack “Blind injection”
and “Timing attack” is used, to change the behavior of
a database or application.

2.5.1 Blind Injection

Sometime developers hide the error details which help
the attacker to get the information about the database.
In this situation, the attacker faces a generic page
provided by the developer, instead of an error
message. An attacker can still steal data by performing
queries that have a Boolean result. For example:

SELECT accounts FROM Customers WHERE
User_id=‘karan’ and 1=0-- AND passwd= AND
pin=0

SELECT accounts FROM Customers WHERE
User_id=‘karan’ and 1=1-- AND passwd= AND
pin=0

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 282
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

If the application is secured both queries would be
unsuccessful because of input validation. But if there
is a weak input validation, then the attacker submits
their first query and receives an error message,
because of “1=0” which is not true. Then the second
query is submitted. If there is no error message,
because of “1=1” which is always true, then the
attacker searches the field vulnerable to injection.

2.5.2 Timing attack

In this type of attack, the attacker observes the
database delays in the database responses and gathers
the information. This attack is similar to blind
injection & attacker can measure the time that a page
takes to load, to determine if the injected statement is
true. An if-then statement is used for injecting queries.
WAITFORE is a keyword, which causes the database
to delay its response by a specified time. For example:

Declare@ varchar (7000) select @ = db_nameO if
(ascii (substring@, 1, 1)) & (power (2, 0)) > 0
waitfore delay ‘0:0:5’

If the first bit of the first byte in the name of the
current database is 1, then database will stop for five
seconds. Then the injected code is able to generate a
delay in response time when condition is true.

2.6 Stored Procedure

Stored procedure could be coded by programmer,
therefore, stored procedure is as inject able as web
application forms. Different database has their
different set of stored procedures, so it is difficult to
use stored procedures without knowing what database
is used. The attacker has the ability to run the
commands on the operating system of the server.

2.7 Alternate Encoding

In this, the attacker modifies their injection strings, to
avoid the signature and filter based checks. To escape
from the various detection systems just by modifying
the expression of the injected SQL query. They use
ASCII, BASE 64, HEX or Unicode as encoding
techniques.

3. Literature Review

SQL injection attack exploits the security
vulnerabilities in the web applications. Several
approaches have been proposed to detect and prevent
this vulnerability. Many researches have been carried

out on detection and prevention techniques of SQL
injection and the key points from these researches are
mentioned in the following sections.

3.1 SQL Injection Detection

To detect SQL injection attack Query Tokenization
[3] is used, that is implemented by the query parser
method. The original query and the injected query are
tokenized separately. All strings before a space, single
quote or double dashes form a token. An array is
created from these tokens where each token is an
element of the array. The original and the injected
query create two different arrays. To detect the SQL
injection attack both array lengths are compared. If the
length of arrays is equal, then no SQL injection and if
they are different then there is SQL injection.

An automatic approach is proposed [4] in which to
test the web service a representative workload is used
and a large set of SQL/Xpath injection attack are
applied to uncover vulnerabilities. The structure of
SQL/Xpath commands issued in the presence of attack
is compared to the previously learned commands to
detect the vulnerabilities. CIVS-WS tool provides the
identification of vulnerable parameter and of
vulnerable lines in the code.

[5] Mutation based SQL injection vulnerability
checking (MUSIC) is used to test the SQL injection
vulnerability using Mutation based testing. It injects
syntax fault to see if any misshapen exists. It can
determine whether the statement contains the
misshapen by comparing the output. The generated
mutant can be killed only with the test cases
containing SQL injection attacks and nothing less.

A grammar based algorithm models the string values
as CFGs (Context Free Grammar) and string
operations as language transducers following
minimization [6]. The input string is highlighted in
this technique and labels are assigned to them, then it
works on input string accordingly. It assigns the direct
label to the strings that come directly from the user
side such as GET requests. It assigns indirect labels to
strings that are coming from the database side. The
labeled strings are concluded to find the contexts and
then the security of each string in aspect of syntax is
checked by regular language & context free language.

[7] Both static and dynamic analyses are combined to
detect the SQL injection attack, the static SQL queries

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 283
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

are compared to the dynamically generated queries,
after removing the attribute value. Through
experiments the effectiveness of this approach has
been tested and validated in web applications.

[8] Static application code analysis and the runtime
validation are combined. In static analysis phase,
program analysis technique is used to represent the
SQL queries as Finite State Automata and show them
as a SQL graph. In runtime validation phase, the
dynamically generated SQL queries are checked with
the static data structure for compliance and labels
them safe/unsafe. In this technique code modification
is not required and SQL graph and SQL query
validation are used in parallel to optimize the runtime
analysis.

3.2 SQL Injection Prevention

In Negative tainting approach two modules:
prevention module and attack database are used [9].
The Prevention module works as different layer.
When the query sent to the database server, first it gets
filtered by this layer. This module takes the query
from the application layer and analyzes it. If it found
SQL injection, it blocks the query and generates alarm
message to the application program. If there is no
SQL injection, query is forwarded to the database
server. In attack database module symptoms of all
known SQL injection attack is stored in the linked list
structure. Symptoms are converted into token, token
are converted into integer values and then a primary
list is formed from these integer values. Similarly a
secondary list is formed from the incoming query. The
secondary list is compared with the primary list. If any
match is found, it is a SQL injection attack. This
technique is able to stop all known attacks except
stored procedure and character encoding. In future to
reduce the time required for pattern matching,
multithreading can be used.

Randomized SQL queries [10] are used to check if
there is any malicious statement or not and then
terminate them. For this purpose, a proxy server is
used between web server and database server to
decode the random SQL query and then forward the
decoded query with the standard set of keywords to
the database for computation. The keyword without
randomization concludes SQL injection attack. De-
randomization element and the communication
protocol are the two primary components between

web server and database server. In this the attacker
cannot do the SQL injection attack without knowing
the random key. The best point of this technique is
that it does not affect the performance.

[11] The static analysis and runtime monitoring are
combined to propose a prevention technique. A model
based approach is used to detect the malicious query
before execution. A model of legitimate queries is
built in its static part and it inspects dynamically
generated queries in the dynamic part with the help of
runtime monitoring and then compared them with the
statically-built model. If the SQL statement meets
with the requirement, then there is no SQL injection
attack but if SQL statement does not meet with the
requirement, there is a SQL injection attack.
Recognizing the hotspot, Creating SQL query models,
Instrument application and Runtime monitoring is the
main tasks of this approach. The result of this
technique shows that it is able to stop all the attempted
attacks. The problem with this technique is that it
cannot support segmented queries.

Preventing SQL Injection Attack in Web Application
(PSIAW) technique is presented for preventing
authentication against SQL injection [12]. Normally, a
login table has two columns username and password.
In this two additional columns are used for the hash
value of username and password. When the user
logins to the database then hash value of username
and password is calculated. If they are equal, the user
is granted to access the data. SQL Query component is
the main component of PSIAW where the hash value
of username and password is calculated. The
drawback of this technique is that other SQL injection
attack except authentication cannot be prevented by
this technique.

Query tokenization and adaptive method are
combined to develop a multi-level prevention
technique [13]. Static analysis of application code is
used in the form of an ordered sequence of tokens of
malicious query. To capture all malicious SQL query,
this database is authenticated against the differences in
incoming SQL query structure at runtime before
sending the query to the database server for execution.
This technique can be implemented on multiple
platforms that using asp.net programming language.
The developed technique helps to secure web
application from SQL injection based on the input
validation.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 284
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

The input from the user is extracted from the
generated query by the web application and then this
data is authenticated from the syntactic perspective of
the generated query in SQL proxy based blocker
technique [14]. A genetic algorithm is used for this
purpose. In this approach the source code of the
application is not required and no need to learn the
authentication process.

[15] Static and runtime analysis approaches are
combined to develop a solution to detect and prevent
the SQL injection attack. Tracking methods are used
to trace and monitor the execution of all received
queries by runtime analysis approach. The developer
creates a prepared set of expected changes and result
of affected objects is compared to this set. This
comparison decides the existence of SQL injection
attack. Static approach performs a string comparison
between the received and previous expected SQL
queries. The result shows that it can detect and
prevent all types of SQL injection attacks. In future,
this technique needs to be enhanced by decreasing the
time delay.

4. Conclusion

SQL injection attack is a very serious problem of web
applications. Finding the efficient solution of this
problem is essential. Researchers have developed
many techniques to detect and prevent this
vulnerability. There is no appropriate solution that can
prevent all types of SQL injection attacks. This paper
gives a review of different types of SQL injection
attacks on the database. The SQL injection detection
and prevention technique are summarized and their
strength and weakness are also discussed.

References

[1] OWASP, "Top 10 2013-Top 10," 2013.
[Online]. Available:
https://www.owasp.org/index.php/Top_10_2013
-Top_10.

[2] J. Fonseca, M. Vieira and H. Madeira,
"Vulnerability & attack injection for web
applications," in International Conference on
Dependable Systems & Networks, Lisbon, 2009.

[3] L. Ntagwabira and S. L. Kang, "Use of Query
Tokenization to detect and prevent SQL
Injection Attacks," in International Conference
on Computer Science and Information

Technology , Chengdu, 2010.

[4] N. Antunes, N. Laranjeiro, M. Vieira and H.
Madeira, "Effective Detection of SQL/XPath
Injection Vulnerabilities in Web Services," in
International Conference on Services
Computing, Bangalore, 2009.

[5] H. Shahriar and M. Zulkernine, "MUSIC:
Mutation-based SQL Injection Vulnerability
Checking," in The Eighth International
Conference on Quality Software, Oxford, 2008.

[6] G. Wassermann and Z. Su, "Sound and Precise
Analysis ofWeb Applications," in ACM
SIGPLAN Conference on Programming
Language Design and Implementation,
California, 2007.

[7] J. G. Kim, "Injection Attack Detection Using the
Removal of SQL Query Attribute Values," in
International Conference on Information Science
and Applications , Jeju Island, 2011.

[8] M. Muthuprasanna, K. Wei and S. Kothari,
"Eliminating SQL Injection Attacks - A
Transparent Defense Mechanism," in
International Symposium on Web Site Evolution,
Philadelphia, 2006.

[9] A. S. Gadgikar, "Preventing SQL Injection
Attacks Using Negative Tainting Approach," in
International Conference on Computational
Intelligence and Computing Research, Enathi,
2013.

[10] S. W. Boyd and A. D. Keromytis, "SQLrand:
Preventing SQL Injection," in Applied
Cryptography and Network Security, Berlin
Heidelberg, Springer, 2004, pp. 292-302.

[11] W. G. J. Halfond and A. Orso, "AMNESIA:
analysis and monitoring for NEutralizing SQL-
injection attacks," in international Conference
on Automated software engineering, New York,
2005.

[12] M. Gandhi and J. Baria, "SQL INJECTION
Attacks in Web Application," International
Journal of Soft Computing and Engineering
(IJSCE), 2013.

[13] N. A. A. Othman, F. H. M. Ali and M. B. M.
Noh, "Secured web application using
combination of Query Tokenization and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 12, December-2016 285
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Adaptive Method in preventing SQL Injection
Attacks," in International Conference on
Computer, Communications and Control
Technology , Langkawi, 2014.

[14] A. Liu, Y. Yuan, D. Wijesekera and A. Stavrou,
"SQLProb: a proxy-based architecture towards
preventing SQL injection attacks," in ACM
symposium on Applied Computing, New York,
2009.

[15] J. O. Atoum and A. J. Qaralleh, "A Hybrid
Technique for SQL Injection Attacks Detection
and Prevention," International Journal of
Database Management Systems (IJDMS), 2014.

 IJSER

http://www.ijser.org/

